

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
1、1(五)勾股定理(五)勾股定理一、知識要點:一、知識要點:1、勾股定理、勾股定理(西方稱為畢達哥拉斯定理、畢達哥拉斯定理、也稱百牛定理百牛定理)勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2b2=c2。公式的變形:a2=c2b2,b2=c2a2。2、勾股定理的逆定理、勾股定理的逆定理如果三角形如果三角形ABCABC的三邊長分別是
2、的三邊長分別是a,b,c,且滿足,且滿足a2b2=c2,那么三角形,那么三角形ABCABC是直角是直角三角形三角形。這個定理叫做勾股定理的逆定理勾股定理的逆定理.3、勾股數(shù)、勾股數(shù)滿足a2b2=c2的三個正整數(shù),稱為勾股數(shù)。注意:①勾股數(shù)必須是正整數(shù),不能是分?jǐn)?shù)或小數(shù)。②一組勾股數(shù)擴大相同的正整數(shù)倍后,仍是勾股數(shù)。4、定理:定理:經(jīng)過證明被確認(rèn)正確的命題叫做定理經(jīng)過證明被確認(rèn)正確的命題叫做定理二、二、知識結(jié)構(gòu):知識結(jié)構(gòu):直角三角形勾股定
3、理應(yīng)用判定直角三角形的一種方法三、考點剖析三、考點剖析考點一:利用勾股定理求面積考點一:利用勾股定理求面積例1求:(1)陰影部分是正方形;(2)陰影部分是長方形;(3)陰影部分是半圓變式變式如圖,以Rt△ABC的三邊為直徑分別向外作三個半圓,試探索三個半圓的面積之間的關(guān)系3分析:如何利用所學(xué)知識,把折線問題轉(zhuǎn)化成直線問題,是問題解決的關(guān)鍵。仔細觀察圖形,不難發(fā)現(xiàn),所有臺階的高度之和恰好是直角三角形ABC的直角邊BC的長度,所有臺階的寬度
4、之和恰好是直角三角形ABC的直角邊AC的長度,只需利用勾股定理,求得這兩條線段的長即可??键c五、利用列方程求線段的長(方程思想)考點五、利用列方程求線段的長(方程思想)例5小強想知道學(xué)校旗桿的高,他發(fā)現(xiàn)旗桿頂端的繩子垂到地面還多1米,當(dāng)他把繩子的下端拉開5米后,發(fā)現(xiàn)下端剛好接觸地面,你能幫他算出來嗎?ABC【強化訓(xùn)練】:折疊矩形ABCD的一邊AD點D落在BC邊上的點F處已知AB=8CMBC=10CM求CF和EC。.ABCEFD考點六:應(yīng)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
評論
0/150
提交評論